

PLATFORM OF LABORATORIES FOR ADVANCES IN CARDIAC EXPERIENCE

ROMA

Centro Congressi di Confindustria Auditorium della Tecnica 9ª Edizione

30 Settembre 1 Ottobre 2022

Solo il COVID ha avuto impatto sugli sportivi o anche il "lockdown"?

Elena Cavarretta, MD PhD

Sapienza Università di Roma – elena.cavarretta@uniroma1.it

I have no conflict of interest.

Not shaking hands

Work from home

Social distancing

Stay at home

Maximal group size:

NHS

Sports clubs closed

Schools closed

Bars/restaurants

NATIONAL LOCKDOWN
STAY AT HO ME

For more information on national restrictions:

www.gov.uk/coronavirus

STAY AT HOME • PROTEI

HM Government

AMOH TA YAT?

<u>You must not leave your home</u> unless it is for a legally permitted reason. For example, work or medical appointments.

Find the latest guidance and exemptions at gov.uk/coronavirus

STAY HOME PROTECT THE NHS SAVE LIVES

National Lockdown STAY AT HOME

Global Physical Activity Questionnaire (GPAQ) Analysis Guide

LACE Una pandemia nella pandemia?

Washif Sports Med 2022

9ª Edizio	Characteristics	Number (%)
CE CE	Sex	
	Male	8265 (66)
Madisian (2022) E	Female	4229 (34)
edicine (2022) 5	Other	32 (0)
i.org/10.1007/s	Age category, years	
	18-29	8419 (67)
AL RESEA	30-39	2431 (19)
	40-49	1078 (9)
	50-59	468 (4)
	≥60	121 (1)
	Missing	9 (-)
ng Dur	Continent	
-	Asia	4777 (38)
actice	Europe	4305 (34)
	Africa	1375 (11)
ents	South America	973 (8)
	North America	907 (7)
	Oceania	189 (2)
145-Lift	Athlete's status	
an Washif ¹	Amateur	6453 (51)
r6,7,8 D	Semiprofessional	2765 (22)
madian 14	Professional	3222 (26)
	Other	86 (1)
li ^{18,19} ()	Main sports	
ner Marty	Soccer	2696 (22)
k ³² On	Athletics	1306 (10)
	Cycling	679 (5)
ola Palac	Volleyball	602 (5)
Cosma 42	Basketball	522 (4)
	Triathlon	503 (4)
	Handball	403 (3)
2000	Rugby	365 (3)
2022	Swimming	348 (3)
	Judo	313 (3)

Table 1 (continued)

	Characteristics	Number (%
	Missing	159 (-)
	Athlete classification	
	World class	1674 (13)
	International	2565 (21)
	National	4482 (36)
	State	3038 (24)
nov	Recreational	763 (6)
HOV	Missing	4 (-)
Cour	Are you currently in lockdown?	
	Yes	7955 (64)
	No	4568 (36)
	Missing	3 (-)
	Lockdown experience, weeks	
rid B. I	< 4	1809 (15)
ortis ¹²		4256 (35)
160.	9-12	5839 (48)
l Rash	≥12	278 (2)
Pallav	Missing	344 (-)
icola I	Number of household members	
	1 (live alone)	815 (7)
en S. (7	2012 (16)
45 . Al	3	2468 (20)
	4	3376 (27)
	≥5	3767 (30)
	Missing	88 (-)

What the governing authority allowed during lockdown	Number (%)
Exercising at home only	8330 (67)
Using available spaces for exercise around my housing area/compound	5256 (42)
Outdoor cycling	3354 (27)
Running in a recreational park or stadium	3317 (27)
Outdoor hiking or trekking in non-public facilities	2577 (21)
Receive/borrow equipment from sports bodies or institutes and train at home	2105 (17)
Access to gymnasium (muscle strengthening/resistance training)	579 (5)
Access to sports academy or institute's school or university's facilities	510 (4)
Other	100(1)

As athletes could select multiple answers for all questions, the numbers do not total 12,526 or 100%

Training frequency and duration

Cavarretta, unpublished data

After 21 days (3 weeks) of no training:

- Stroke volume is reduced.
- Blood plasma volume is reduced.
- Total peripheral resistance is increased.
- Left ventricle heart volume and wall thickness decreases.
- Citrate Synthase (CS) activity decreases 20% (1-2.5% per day). This enzyme plays a key role in aerobic energy production in mitochondria.

Cambiamenti cardiometabolici dovuti all'inattività

Table. Changes In	n Metabolic and Physical	Characteristics With Reduced Daily Steps

	Mean (95% CI)					
		Reduced Steps				
Characteristic	Preintervention	1 wk	2 wk	3 wk	P Value	
		Study 1				
Steps per day, No.	6203 (5135-7271)	1394 (1261-1528)			<.001ª	
OGTT						
Plasma insulin AUC, pmol/L/3h	757 (488-1026)b	1157 (812-1501)	1218 (818-1618)	1352 (1025-1678)	<.02b	
53		Study 2			-	
Steps per day, No.	10 501 (8755-12 247)		1344 (1272-1416)		<.001ª	
OGTT	80 80 00 \$150 00 100 00 100 00 00 00 00 00 00 00 00				1111111111111	
Plasma insulin AUC, pmol/L/3h	599 (489-709)		942 (443-1440)		.04c	
Plasma C-peptide AUC, pmol/L/3h	4310 (3676-4944)		5795 (3911-7678)		.036	
OFTT Plasma insulin AUC, pmol/L/8h	216 (186-245)		323 (255-392)		.001ª	
Plasma C-peptide AUC, pmol/L/8h	2380 (2001-2759)		3040 (2550-3529)		0000	
Plasma triglycerides AUC, µmol/L/8h	9566 (7828-11303)		11 580 (9308-13852)		.02ª	
Fat mass Total fat mass, kg	12.0 (9.3-14.7)		11.9 (9.4-14.5)		.69ª	
Intra-abdominal fat mass, mL	693 (485-902)		740 (552-929)		.05	
					< 0018	
Total fat-free mass, kg	55.7 (52.6-58.7)		54.5 (52.0-57.3)		<.001a	
BMI	22.1 (20.7-23.6)		21.8 (20.4-23.2)	1.0	.001ª	

Effect Cardiometabolici a breve termine (14gg) dovutional all'inattività

...induzione del danno endoteliale!

Bowden Front Physiol 2021

Table 2. Variations of body composition and of left ventricular mass observed in professional soccer players during the regular season (n=23)

Variable	Pre season	I month	Mid season	End season
FFM (kg)	64.3 ± 6.0	65.5 ± 6.4	66.4 ± 6.4*	66.3 ± 5.0*
Body fat (%)	14.6 ± 4.0	$11.9 \pm 2.9*$	$11.0 \pm 2.6*$	11.0 ± 3.0*
LVM (g)	195.0 ± 25.8	201.8 ± 32.1	212.5 ± 32.6*†	$213.5 \pm 22.9*\dagger$
LVMi (g/m ²)	98.3 ± 13.6	101.7 ± 15.3	107.2 ± 13.5*†	$106.2 \pm 13.8^*$
LVM/height (g/m)	108.2 ± 14.7	111.8 ± 17.9	117.8 ± 16.4*†	119.0 ± 13.7*†
LVM/height ^{2.7} (g/m ^{2.7})	39.8 ± 6.6	41.1 ± 7.5	43.4 ± 7.5*†	44.2 ± 6.8*†
LVM/FFM (g/kg)	3.1 ± 0.4	3.1 ± 0.5	3.2 ± 0.4*	$3.2 \pm 0.4*$

Values are mean \pm SD; *p < 0.05 vs. baseline measurements; †p < 0.05 vs. I-month measurements; FFM, fat-free mass; LVM, left ventricular mass; LVMi, left ventricular mass index.

Figure 1. Correlation between Δ left ventricular mass index and Δ fat-free mass (end season – pre season) obtained by echocardiography and by dual-energy X-ray absorptiometry in professional soccer players during the regular season. FFM, fat-free mass; LVMi, left ventricular mass index.

D'Ascenzi EJPC 2015

_	

	Cluster 1	Cluster 2	Cluster 3	Significance
	(N=10)	(N=15)	(N=4)	
Age, y	31.5 (27; 33)	24 (22; 27)	29 (23; 36)	0.032
Play role				0.021
Goalkeeper, n (%)	0 (0%)	2 (7%)	2 (7%)	
Defender, n (%)	5 (17%)	5 (17%)	2 (7%)	
Midfielder, n (%)	2 (7%)	8 (28%)	0 (0%)	
Forward, n (%)	3 (10%)	0 (0%)	0 (0%)	
Weight, Kg	- 0.25 (-2; 1)	1.0 (0.0; 4.0)	-1.0 (-6.7; 1.0)	0.011
вмі,	-0.08 (-0.5; 0.3)	0.3 (0.0; 1.1)	- 0.005 (-0.07; 0.02)	0.008

ORIGINAL ARTICLE

Impact of detraining process experienced during the COVID-19 pandemic on the selected physical and motor features of football players

Table 3. Percentage Distributions between the Pretest-Posttest Results of Selected Physical Properties

Table 4. Percentage Distributions between the Pretest-Posttest Results of Selected Motoric Properties

Parameters	Mean % Difference	Parameters	Mean % Difference
Body Weight	0.11	30 m Speed	-0.26
Body Muscle Mass	-3.19	Flexibility	-6.65
Body Fat Mass	21.75	Peak Power	-5.54
Body Fat Percentage	21.24	Average Power	-5.98
BMI	0.18	Minimum Power	-9.244
Waist-Hip Ratio	4.36	Fatigue Index	-3.764
		-	

tion;

Article

Ef Table 1. Training intervention of the studied players during the lockdown in Poland (11 March 2020 n th-6 May 2020).

Pav	Week	Number of Training Sessions per Week	Duration of a Training Session	Aim	Training Measures	Methods of Control
	1–3	4/week	60 min	Stability/ROM Low intensity	Individual training	Video analysis, RPE
10.0	4	5/week	60 min	Stability/ROM Low intensity Individual training		Video analysis, RPE
-	5–6	6/week	60–75 min	Stability/aerobic endurance High intensity	Running/individual training	Distance, time, map, RPE
•	7–8	6/week	60–75 min	Stability/aerobic endurance High intensity	Running/individual training	Distance, time, map, RPE

	Mean Cardiorespiratory Endurance among the Six Time Periods							
Measurements	Months	T 1 M = 1710.8 (m) ±294.52 (m)	T 2 M = 1730.8 (m) ±266.50 (m)	T 3 M = 1580.0 (m) ±237.38 (m)	T 4 M = 1701.7 (m) ±179.75 (m)	T 5 M = 1837.5 (m) ±248.14 (m)	T 6 M = 1890.0 (m) ±262.16 (m)	
T 1	January 2020		123	20	20	20	120	
T 2	March 2020	p > 0.05		-	-	-	1 - 2	
Т3	May 2020	p < 0.01	p < 0.001			2		
T 4	June 2020	p > 0.05	p > 0.05	p < 0.01		5 5 2	653	
Т5	July 2020	p < 0.01	p < 0.05	p < 0.001	p < 0.001		10 - 0	
Т 6	January 2021	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p > 0.05		

 $SD \pm standard deviation; M—mean; T 1—January 2020—Start of tests; T 2—March 2020—1 week before the lockdown; T 3—May 2020—1 week after the lockdown; T 4—June 2020—4 weeks after the lockdown; T 5—July 2020—8 weeks after the lockdown; and T 6—January 2021—finishing the study after a year-long cycle.$

In conclusion

- The lockdown-induced detraining was present in athletes at all level of performance
- The prevention and control measures during lockdown gave rise to challenging factors that aggravated further problems and resulted in public health complications.
- The pandemic had physical, nutritional, and psychological consequences that affected the health status of athletes.
- Sports practice must be safe and healthy, in order to reduce the risk of infection

GRAZIE PER LA VOSTRA ATTENZIONE

A OF Prizione

Original research

Physical inactivity is associated with a higher risk for

covers COVID 10 outcomes a study in 19 110

